\mathfrak{g} o as parato as para

SUBJECT CODE SUE		BJE	ECT	2
A-16-18 PHYSICAL		_ S	CIENCES	QUESTION BOOKLET NUMBER
HALL TICKET NU	HALL TICKET NUMBER		PAPER	N E
			II	- Boo
OMR SHEET	NUMBER		NUMBER OF QUESTIONS	
			100	
	MAXIMUM MARKS		NUMBER OF PAGES	
2 HOURS	200		16	BEF
A This is to certify that, the entri		∟ rtioi	-	
Candidates Signature	<u> </u>		Name and Signature	e of Invigilator
 be evaluated. Read instructions given inside carefully. Rough Work is to be done in the end of this booklet. If you write your name or put any mark on any part of the OMR Answer Sheet, except for the space allotted for the relevant entries, which may disclose your identity, you will render yourself liable to disqualification. The candidate must handover the OMR Answer Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. The candidate is allowed to take away the carbon copy of OMR Sheet and used Question paper booklet at the end of the 		 2. 3. 4. 5. 6. 7. 8. 	అభ్యర్థికి సూచనలు ఈ పుట పై భాగంలో ఇవ్వబడిన స్థలంలో మీ హార్ ఈ ప్రశ్న పత్రము వంద (100) బహుకైచ్చిక డశ్ర పరీక్ష (సారంభమున ఈ ప్రశ్నాషత్రము మీకు నిమిషములలో <u>ఈ డ్రశ్నాషత్రమును తెరిచి కింద సరిషూసుకోండి.</u> (i) ఈ ప్రశ్న పత్రమును చూడడానికి కవర్ పేట చించండి. కాగితపు సీలులేని మరియు ఇది మీరు అంగీకరించవద్దు. (ii) కమిపజి పైముదించిన సమాచారం ర్రకారం శ నంఖ్యను మరియు ప్రశ్నల సంఖ్యల్ ప్రశ్నలు లేద మీరు అంగీకరించవద్దు. (iii) కమిపజి పైముదించిన సంఖ్యల్ ప్రశ్నలు లేద పంటి దోషప్రూరితమైన ప్రశ్న పత్రాని లేదా పంటి దోషప్రూరితమైన ప్రశ్న పత్రాని లేదా పంటి దోషప్రూరితమైన ప్రశ్న పత్రాని దేందా పర్యవేళ్లకునికి తిరిగి ఇచ్చిచేసి దానికి బడ లీసుకోండి. అదనంతరం ప్రశ్నపథ్రము ప ఇచ్చబడదు. (iii) పై విధంగా సరిచూసుకొన్న తర్వాత ప్రశ్నావ అదేవిధంగా OMR పత్రము సంఖ్యను ఈ రాయవరెను. (పతి ప్రశ్నకు నాలుగు ప్రత్యామ్నాయలు (A), (ఇవ్వబడ్డాయి. ప్రతి ప్రశ్నకు సరైన జనాలు ఎన్ను సంఖ్యకు ఇవ్వబడిన నాలుగు వృత్రాల్లో నరైన జనాలు పెన్తతో కింద తెలిపిన విధంగా పూరించాలి ఉదాహరణ : (A) (B) (D) (C) సరైన ప్రతిస్పందన అయితే. (సళ్నలకు జనాలును ఈ ప్రశ్నపత్రముతో ఇవ్వబడి వృత్రాల్లోనే పూరించి గుర్తించాలి. అలాకాక సమాధా లేక సగ వృత్తం లేదా అసంపూర్ణ వృత్రాన్ని నిం చేయబడదు. (పళ్న పత్రము లోపల ఇచ్చిన సూచనలను జాగత్రగా చిత్తువనిని పళ్ళపంతము చివర ఇచ్చిన ఖాళీ స్థలను OMRపత్రము పై నీర్లీత స్థలలో సూచిందమంశిన వి గుర్తింపును తెలిపీ విధంగా మీ పీరు రాయడం గా గానీ చేసినట్లయితే మీ అనర్హతకు మీరే బాధ్యులవ్ ఫాటిని పరీక్ష గది బయటకు తీసుకువెళ్ళకూడం అభ్వర్తులు పళ్ళ వర్యాశి OMR పత్రం యుక, క	్లలను కలిగి ఉంది. ఇవ్వబడుతుంది మొదటి ఐదు <u>తెలిపిస అంశాలసు తప్పనిసరిగా</u> జి అంచున ఉన్న కాగితపు సీలును వరకే తెరిచి ఉన్న ధశ్నావత్రమును ఈ ప్రశ్ర వర్రములోని పేజీల కోండి పేజీల సంఖ్యకు సంబంధించి పోపుట లేదా నిజర్రతి కాకపోవుల • ఏపైనా లేడాలుండుల సే మొదటి ఐదు నిమిషాల్లో పరీక్షా సిలుగా సరిగ్గా ఉన్న ప్రశ్వపడ్రాన్ని గార్చబడడు అదనపు సమయం తం సంఖ్యను OMR పత్రము పై • ప్రశ్నాపత్రము పై నిర్ధిష్ట స్థలంలో (B), (C) మరియు (D) లుగా కొని OMR పత్రములో సతి భశ్నా సూచించే వృత్తాన్ని బాల్ పాయింట్ (B), (C) మరియు (D) లుగా కొని OMR పత్రములో సతి భశ్నా సూచించే వృత్తాన్ని బాల్ పాయింట్ ని OMR పత్రము పైన ఇవ్వబడిన స పత్రం పై పేరొక చోట గుర్తించిన సిన మీ జవాబు మూల్యాంకనం ా చదవండి. బలో చేయాలి. ఎవరాలు తప్పించి ఇతర స్థలంలో మీ నీ లేదా ఇతర చిహ్నాలను పెట్టడం ఎతారు. పరిగా పరీక్ష పర్యవేష్టకుడికి ఇవ్వాలి. మ. పరీక్ష పూర్తయిన తరువాత
examination. 10. Use only Blue/Black Ball point			నీలి/నల్ల రంగు బాల్ పాయింట్ పెన్ మాత్రమే ఉ లాగరిథమ్ టేబుల్స్, క్యాలిక్యులేటర్లు, ఎల్రక్షాని!	
	ble etc., is prohibited.		గదిలో ఉపయోగించడం నిషేధం.	
2. There is no negative marks for 11 <i>≪</i>	1	12.	తప్పు సమాధానాలకు మార్కుల తగ్గింపు లేదు.	A-16-18
SECTION SECTIO	**************************************	503	ುಡಬಡಬಡಬಡಬಡಬ	

|| **

PHYSICAL SCIENCES Paper – II

- 1. If a, b, c are vectors and a + b + c = 0|a| = 7, |b| = 5, |c| = 3, then the angle between b and c is
 - (A) 90° (B) 60°
 - (C) 45° (D) 30°
- **2.** The Eigen value of the matrix

- **3.** Which of the following statement (s) are incorrect for the rank of a matrix ?
 - I. The rank of null matrix is 1
 - II. The rank of non-zero matrix ≥ 1
 - III. The rank of $m \times n$ matrix is $\leq m$ if $m \geq n$
 - IV. The rank of every 'n' square non singular matrix is 'n'
 - (A) IV and III (B) I and IV
 - (C) II and IV (D) Both I and III
- 4. If a and b are the order and degree of the

differential equation $\begin{bmatrix} d^5y \\ dx^5 + \frac{d^3y}{dx^3} \end{bmatrix}^{3/2} = \frac{d^2y}{dx^2}.$ Then 2a + b is (A) 11 (B) 8 (C) 13 (D) 15

- 5. Match the following :
- I. Legendre polynomial a. $e^{-\frac{\pi}{1-t}}$
- II. Bessel polynomial b. $(1-2+x+t^2)^{-1/2}$
- III. Hermite polynomial c. $e^{\frac{x}{2}(t-\frac{1}{t})}$
- IV. Laguerre polynomial d. $x^2 (t x)^2$

	L	Ш	III	IV
(A)	b	d	а	С
(B)	С	b	а	d
(C)	b	С	d	а
(D)	С	а	b	d

- 6. Inverse Laplace transform of $\frac{1}{s^2(s+1)}$ is
 - (A) $t 1 + e^{-t}$ (B) $\frac{1}{2}t^2e^t$
 - (C) $\frac{1}{2}t^2 1 + e^t$ (D) $t^2 1 + e^{-t}$
- The Fourier transform of derivative of Dirac delta function is proportional to
 - (A) 0
 (B) i_k
 (C) 1
 (D) cosk
- **8.** At all points in a complex plane, which of the following is the analytical function of z ?

(A)
$$|z|^2$$
 (B) \sqrt{z}
(C) z^2 (D) $\frac{1}{z^2}$

3

- **9.** Which of the following distribution mean and variance are equal ?
 - (A) Normal distribution
 - (B) Binomial distribution
 - (C) Poisson distribution
 - (D) Bernoulli distribution
- 10. The trapezoidal rule for the integral

$$\int_{-1}^{1} e^{x} dx \text{ is}$$
(A) $\frac{h}{3} [e^{-1} + 2e^{0} + e^{1}]$
(B) $\frac{h}{2} [e^{-1} + 2e^{0} + e^{1}]$
(C) $\frac{h}{3} [e^{-1} + 4e^{0} + e^{1}]$
(D) $\frac{h}{2} [e^{-1} + 4e^{0} + e^{1}]$

11. By applying Euler's method, the value of y(0.2) for the differential equation

 $\frac{dy}{dx} = 1 + y^2$ at x = 0, y = 1 with a step size

of 0.1 is

(A) 1.102	(B) 1.202
(C) 1.303	(D) 1.404

12. The number of degrees of freedom of a rigid body in n- dimensional space is

(A) n!	(B) 2n
$\langle \mathbf{O} \rangle$	

- (C) 6 (D) n(n+1)/2
- **13.** The second law of Kepler for planetary motion is a consequence of the law of conservation
 - (A) Energy
 - (B) Linear momentum
 - (C) Angular momentum
 - (D) Isospin

 According to special theory of relativity, the speed 'v' of a free particle of mass 'm' and total energy 'E' is

(A)
$$v = c \sqrt{1 - \left(\frac{mc^2}{E}\right)^2}$$

(B) $v = c \sqrt{1 - \left(\frac{mc^2}{E}\right)^2}$
(C) $v = \sqrt{\frac{2E}{m}} \left(1 + \frac{mc^2}{E}\right)$
(D) $v = c \sqrt{1 + \left(\frac{mc^2}{E}\right)^2}$

15. An electron gains energy so that its mass becomes $2m_0$ then it's speed is

(A)
$$\frac{\sqrt{3}}{2}$$
 c (B) $\frac{3}{4}$ c
(C) $\frac{3}{2}$ c (D) $\sqrt{\frac{3}{2}}$ c

- 16. Choose the correct statement (s).
 - i. The generating function $F = \sum_{k} q_k p_k$ generates the identity transformation
 - ii. The generating function $F = -\sum\limits_{k} q_{k} p_{k}$ generates the transformation
 - iii. The generating function $F = \sum_{k} q_k p_k$ cannot generate the identity transformation
 - iv. The generating function $F=-\sum\limits_{k}q_{k}p_{k}$ generates the identity transformation

A-16-18

(A) i only (B) ii only

4

(C) iv only (D) i and ii only

|| 🖄

17. For a charged particle in an electromagnetic field, the Hamiltonian H is represented as

(A)
$$H = \frac{1}{2m}(p - qA)^2 + q\phi$$

(B) $H = \frac{1}{2m}(p - qA)^2 - q\phi$
(C) $H = \frac{1}{2m}[p - q(A)]^2 + q\phi$

(D)
$$H = \frac{1}{2m}(p+qA)^2 - q\phi$$

18. Identify the correct statements.

- i. The number of physical quantities that are required to uniquely and completely define the position (or) configuration of the system is called degrees of freedom.
- ii. The number of degrees of freedom of the system consisting of a cylinder rolling on a stationary inclined plane is two.
- iii. The number of degrees of freedom of a double pendulum is two (assume in extensible string).
- iv. The number of degrees of freedom of a conical pendulum and a spherical pendulum are two.
- (A) ii, iii and iv are correct
- (B) i, iii and ii are correct
- (C) i, ii and iii are correct
- (D) i and iii are correct
- **19.** The dimensional space required to represent a system of 'n' particles with 'l' constraints is
 - (A) 3n dimensions
 - (B) (3n I) dimensions
 - (C) (3n + I) dimensions
 - (D) I dimensions

20. If 'f' be a function depending on positions 'q', moment 'p' and time 't', the equation of motion in Poisson-Bracket form is

(A)
$$\frac{df}{dt} = [f, H]_{q, p}$$
 (B) $\frac{df}{dt} = [f, H]_{q, p} + \frac{\partial f}{\partial t}$
(C) $\frac{df}{dt} = [H, f]_{q, p}$ (D) $\frac{df}{dt} = [H, f]_{q, p} - \frac{\partial f}{\partial t}$

21. The Lagrangian of a particle moving in one dimensions is given by $L = \frac{x^2}{2x} - v(x)$. Thus the Hamiltonian is

(A)
$$\frac{1}{2}p_x^2 x - v(x)$$
 (B) $p_x x - v(x)$
(C) $\frac{1}{2}p_x^2 x + v(x)$ (D) $p_x x + v(x)$

- **22.** Hamilton Jacobi theory provides the canonical transformation in which ______ is/are cyclic.
 - (A) position
 - (B) momentum
 - (C) position and momentum
 - (D) velocity

5

23. A charge Q is uniformly distributed over a semicircular ring of radius R. The electric field at the center of the semicircular ring is

(A)
$$\frac{Q}{\pi^2 \in_0 R}$$
 (B) $\frac{Q}{\pi \in_0 R^2}$
(C) $\frac{Q}{2\pi^2 \in_0 R^2}$ (D) $\frac{Q}{\pi \in_0 R}$

24. A circular loop of resistance R and area A is subjected to a magnetic field $B_0 \sin\omega t$; B_0 is positive constant. Then the amplitude of the induced current in the loop at an angular position of π radians of current is

(A)
$$B_0 RA$$
 (B) $\frac{B_0 A}{R}$
(C) $\frac{B_0 R}{A}$ (D) Zero

A-16-18

|| 🗷

- **25.** The torque on a rectangular coil placed in a uniform magnetic field is large when
 - (A) number of turns of the coil is less
 - (B) number of turns of the coil is large
 - (C) plane of the coil is parallel to the field
 - (D) area of the coil is small
- **26.** If a charge moves along a rectangular loop and uniform magnetic field is applied in a direction perpendicular to the plane of the loop, then
 - (A) Kinetic energy of the charge remains constant
 - (B) Potential energy is higher than kinetic energy of the charge
 - (C) Kinetic energy is not constant along the loop
 - (D) Force is non-uniform in one direction and uniform in another direction of the loop
- 27. The vector potential at the position defined by vector \vec{r} in a uniform magnetic field \vec{B} can be represented
 - (A) $\vec{B} \times \vec{r}$ (B) $\frac{1}{2} (\vec{B} \times \vec{r})$
 - (C) $\overline{\nabla}_{\times}(\overline{B} \times \overline{r})$ (D) $\overline{(\overline{\nabla} \times \overline{B})} \times \overline{r}$
- 28. In the following equations, which one represents that the electric field is to be zero; Ē is electric field and B is magnetic field
 - $(A) \quad \int\limits_{area} \vec{E} \cdot \overline{ds} = 0$
 - (B) $\oint \vec{E} \cdot \vec{dl} = 0$
 - (C) $\int_{\text{area}} \vec{E} \cdot \vec{ds} = -\frac{d}{dt} \oint \vec{B} \cdot \vec{dl}$
 - (D) $\oint \vec{B} \cdot \vec{dl} = \underset{o}{\mu} I + \underset{o}{\mu} \in \underset{o}{\partial} \frac{\partial}{\partial t} \int \vec{E} \cdot \vec{ds}$

29. For a vector potential $\vec{A}(\vec{r}, t)$, the divergence of \vec{A} is $\vec{\nabla} \cdot \vec{A} = -\frac{kt}{r^3}$ where k is a constant of appropriate dimension. If the vector and scalar potential are in Lorentz gauge, then the scalar potential is

(A)
$$\frac{kt^2}{r^3}$$
 (B) $\frac{kc^2t^2}{2r^3}$
(C) $\frac{kt}{r^4}$ (D) $\frac{kt^2}{c^3r^3}$

- **30.** In a rectangular wave guide, the mode that propagates with minimum attenuation through the wave guide is
 - (A) TE₀₁ (B) TE₁₀ (C) TM₁₀ (D) TM₁₁
- **31.** An electromagnetic wave is propagating in free space along Z-direction. If the electric field is given by $\vec{E} = \cos(\omega t kz)\hat{i}$, where $\omega = ck$; $k = \frac{2\pi}{\lambda}$; then the magnetic field is
 - (A) $\vec{B} = \frac{1}{c} \cos(\omega t kz)\hat{j}$ (B) $\vec{B} = \frac{1}{c} \sin(\omega t - kz)\hat{j}$

(C)
$$\vec{B} = \frac{1}{c} \cos(\omega t - kz)\hat{i}$$

(D) $\vec{B} = \frac{1}{c} \sin(\omega t - kz)\hat{i}$

6

- Given a wave with the dispersion relation
 ω = ck + m with k > 0 and m > 0, which one of the following is true ?
 - (A) Group velocity is greater than phase velocity
 - (B) Group velocity is smaller than phase velocity
 - (C) Group velocity and phase velocity are equal
 - (D) No define relation between group velocity and phase velocity

|| 🖄

- - (A) ϕ is independent of time and \overline{A} is solenoidal
 - (B) ϕ is independent of time and \overline{A} is irrotational
 - (C) ϕ is independent of time and \overline{A} is dependent on time
 - (D) ϕ is constant
- **34.** If a particle moving in a potential $V(x) = \frac{1}{2} kx^2$, where k is a constant, then the probability amplitude of a ground state at x = 0 in relation to all other states is
 - (A) minimum
 - (B) zero
 - (C) negative
 - (D) maximum
- **35.** A linear Hermitian operator A has infinite number of eigen values a_i and has a complete set of orthonormal eigen

states $|a_i\rangle$. If the system is in a state

- $\left|\psi\right\rangle = \left|a_{1}\right\rangle + \frac{i}{2}\left|a_{2}\right\rangle$ the probability of getting
- a value a, for A on measurement is
- (A) $\frac{1}{3}$
- (B) $\frac{1}{5}$

(C)
$$\frac{1}{6}$$

(D) zero

- **36.** The operation of parity operator on a wave function is given by $\pi\psi(\mathbf{r}) = \psi(-\mathbf{r})$. Choose the correct statement from the following.
 - (A) π is unitary but not Hermitian
 - (B) π is Hermitian but not unitary
 - (C) π is Hermitian and unitary

(D)
$$\pi^2 = \pi$$

- **37.** The evaluation of commutation [x, p²] gives
 - (A) iħ
 - (B) 2iħ
 - (C) 2iħx
 - (D) 2iħp
- 38. The eigen functions of an infinite potential well

$$V(x) = 0 \qquad \text{if } 0 \leq x \leq a$$

 $=\infty$ otherwise are given by

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}\right) x \ n = 1, 2, 3,...$$

This system is perturbed by

 $H'=V_{_0} \qquad \text{ for } 0\leq x\leq a$

= 0 otherwise

Based on the first order perturbation, the correction to the nth energy state is

(A)
$$\frac{V_0}{n}$$

(B) $V_0 n$
(C) $\frac{V_0}{2}$
(D) V_0

7

- **39.** Any function $G(\overline{r}, \overline{r'})$ is called Green's function for the operator A, if
 - (A) $A(\overline{r}, \nabla) G(\overline{r}, \overline{r}') = 0$
 - (B) $A(\overline{r}, \nabla) G(\overline{r}, \overline{r'}) = 1$
 - (C) $A(\overline{\Gamma}, \nabla) G(\overline{\Gamma}, \overline{\Gamma}) = \delta(\overline{\Gamma}, -\overline{\Gamma})$
 - (D) $A(\overline{r}, \nabla) G(\overline{r}, \overline{r'}) = A(\overline{r}, \nabla)$
- **40.** The scattering under Born approximation leads Fourier transform of the potential with respect to momentum transfer to the target. This approximation is valid when the scattering potential is
 - (A) weak and the incident energy of the projectile is high
 - (B) strong and the projectile energy high
 - (C) weak and the projectile energy is low
 - (D) strong and the projectile energy is low
- **41.** The electronic energy levels in the helium atom are divided into spin triplet and singlet states due to
 - (A) spin wavefunction in the triplet state is of antisymmetric character
 - (B) the spin wavefunction in the singlet state is of antisymmetric character
 - (C) spin and space wavefunctions in the singlet state are of antisymmetric nature under exchange
 - (D) spin and space wavefunctions in the singlet state are of symmetric in nature

42. If $\psi(\overline{r}, t) = ae^{i(\overline{k}.\overline{r} - wt)}$ is the solution of the Klein-Gordon equation of a particle $\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \psi(\overline{r}, t) = \frac{m^2 c^2}{\hbar^2} \psi(r, t)$

then the energy of that particle can write represented as

(A)
$$E = mc^{2}$$

(B) $E = \pm \sqrt{c^{2}p^{2} + m^{2}c^{4}}$
(C) zero
(D) $E = c^{2}p^{2} + m^{2}c^{4}$

43. If the equation of motion of the Dirac particle to evaluate the velocity is $i\hbar \dot{r} = [\bar{r}, H]$, then the x-component of the velocity is

(A)
$$v_x$$
 (B) βc
(C) $\alpha_x c$ (D) $\alpha_y v_y$

44. The product of spin $-\frac{1}{2}$ angular momentum operators $s_x s_y s_z s_y s_z s_x$ gives

(A)
$$-\frac{i\hbar^5}{32}$$
 (B) $\frac{i\hbar^5}{32}S_z$

(C)
$$-\frac{\hbar^6}{64}$$
 (D) $\frac{\hbar^6}{64}$

45. If q is the partition function of one molecule, then the partition function of the gas consisting of N non-interacting molecules is

(A)
$$\frac{1}{N!}q^{N}$$
 (B) $N!q^{N}$
(C) $\frac{1}{N!}q$ (D) $\frac{N}{N!}q^{N}$

46. According to the law of equipartition of energy, the average energy per molecule is

(A)
$$\frac{1}{2}K_{B}T$$
 (B) $\frac{2}{3}K_{B}T$
(C) $\frac{3}{2}K_{B}T$ (D) $\frac{5}{2}K_{B}T$

47. Which of the following equation is true for Clausious Clapeyron's latent heat ?

(A)
$$\frac{dP}{dS} = \frac{T}{L(V_2 - V_1)}$$

(B)
$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$$

(C)
$$\frac{dS}{dT} = \frac{L}{T(P_2 - P_1)}$$

(D)
$$\frac{dV}{dT} = \frac{L}{T(P_2 - P_1)}$$

- **48.** There is a possibility of average occupation of a single particle energy level becoming infinity for
 - (A) M B system
 - (B) F D system
 - (C) B E system
 - (D) for all systems for $T\to\infty$
- 49. Gibbs paradox has been resolved by
 - (A) going from classical to quantum statistics
 - (B) including spin of the particles
 - (C) correct Boltzmann counting
 - (D) taking relativistic effects into account

- **50.** Paramagnetic susceptibility of free electron gas
 - (A) Obeys Curie law
 - (B) Obeys Curie-Weiss law
 - (C) Almost temperature independent
 - (D) Is negative as in diamagnets
- **51.** The magnetic susceptibility of a system can be related to the second order derivative of Helmholtz free energy with respect to
 - (A) Magnetization (B) Temperature
 - (C) Volume (D) Magnetic field
- **52.** Which of the following relation between the specific heat C and canonical partition function Z is correct ?

(A)
$$C = \frac{\partial}{\partial T} \left[K_B T^2 \frac{\partial}{\partial T} ln Z \right]$$

(B) $C = \frac{\partial}{\partial T} \left[K_B^2 T^2 \frac{\partial}{\partial T} ln Z \right]$
(C) $C = K_B^2 T^2 \frac{\partial^2}{\partial T^2} ln Z$
(D) $C = \frac{1}{K_B T} \frac{\partial^2}{\partial T^2} ln Z$

53. The quantum distribution functions reduces to classical distribution functions when

(A)
$$\lambda^3 \ll \frac{V}{N}$$
 (B) $\lambda^3 \gg \frac{V}{N}$
(C) $\lambda^3 = \frac{V}{N}$ (D) $\lambda^3 = \frac{N}{V}$

where
$$\lambda = de$$
 Broglie wave length
N = Number of particles
V = Volume

|| 🔊

54. The model Hamiltonian of a spin system in terms of weighted components α and β is

$$\boldsymbol{H} = - \sum_{i,j} \boldsymbol{J}_{ij} \bigg[\alpha \left(\boldsymbol{S}_i^x \boldsymbol{S}_j^x + \boldsymbol{S}_i^y \boldsymbol{S}_j^y \right) + \beta \boldsymbol{S}_i^z \boldsymbol{S}_j^z \bigg]$$

- If $\alpha = \beta = 1$ then the model is called
- (A) Ising model
- (B) XY model
- (C) Hubbard model
- (D) Heisenberg model
- **55.** For $T < T_c$ the Vander Waals isotherm is shown in the figure

The Maxwells line is constructed by using the condition

(A) $P_{M}(V_{3} - V_{1}) = \int_{V_{1}}^{V_{3}} PdV$ (B) $P_{M}(V_{2} - V_{1}) = \int_{V_{1}}^{V_{2}} PdV$ (C) $P_{M}(V_{3} - V_{2}) = \int_{V_{2}}^{V_{3}} PdV$ (D) $P_{M}(V_{2} - V_{3}) = \int_{V_{1}}^{V_{3}} PdV$ 56. The following circuit represents

- (A) Differentiator
- (B) Current follower
- (C) Adder
- (D) Voltage regulator
- 57. The relation between emitter current amplification (α) and base current amplification factor (β) is

(A)
$$\beta = \frac{\alpha}{1+\alpha}$$
 (B) $\alpha = \frac{\beta}{1+\alpha}$

(C)
$$\beta = \frac{\alpha}{1-\alpha}$$
 (D) $\beta = \frac{\alpha}{1-2\beta}$

58. The op-amp circuit shown in figure has a non-inverting gain of 101.

10

- 59. A tunnel diode works on the principle(s) of
 - i. Tunneling of charge carriers across the junction
 - ii. Thermionic emission
 - iii. Diffusion of charge carriers across the junction
 - iv. Attraction of charge carriers across the junction
 - (A) i and iii are correct
 - (B) ii and iv are correct
 - (C) i is correct
 - (D) iii is correct
- **60.** Derive the Boolean expressions for the logic circuit shown below :

- (A) C (A + B) DE
- (B) [C(A+B)D+E]
- (C) [C (A+ B) + D] E
- (D) ABCDE
- **61.** For using 8085 microprocessor-based system
 - i. No program is required
 - ii. Program must be stored in memory
 - iii. Program need not be stored in memory
 - iv. Program is stored in the internal register
 - (A) only i is correct
 - (B) only ii is correct
 - (C) i and ii are correct
 - (D) iii and iv are correct

- **62.** Match the following :
- a. RAM size-8085 microprocessor i. 32 kb
- b. RAM size-8051 microcontroller ii. 64 kb
- c. ROM size-8085 microprocessor iii. 128 bytes
- d. ROM size-8051 microcontroller iv. 4 kb

	а	b	С	d
(A)	ii	iii	i	iv
(B)	iv	i	iii	ii
(C)	i	iii	iv	ii
(D)	iii	iv	ii	i

- **63.** The program counter (PC) in a microprocessor
 - (A) Counts the number of programs being executed
 - (B) Counts the number of instructions being executed
 - (C) Counts the number of interrupts handled
 - (D) Keeps the address of the next address to be fetched
- 64. A half-adder can be constructed using two(2) input logic gates; one of them is an AND gate then the other one is
 - (A) EX-OR (B) NAND
 - (C) NOR (D) OR
- **65.** The first byte of an absolute jump instruction in 8051 consists of
 - (A) 3 LSBs of opcode and 5 MSBs of 11-bit address
 - (B) 5 MSBs of opcode and 3 LSBs of 11-bit address
 - (C) 6 MSBs of opcode and 1 LSB of 11-bit address
 - (D) 5 LSBs of opcode and 3 MSBs of 11-bit address
- **66.** With 8051 microcontroller timers with the crystal frequency of 22 MHz then what is the maximum delay that can be generated ?
 - (A) 2978.9 sec (B) 0.011 msec
 - (C) 11.63 sec (D) 2.97 msec

A-16-18

|| 🗷

67. The quantum numbers of two electrons in a two valence electron atom are given below

$$n_1 = 6, l_1 = 3, s_1 = \frac{1}{2}$$

 $n_2 = 5, l_2 = 1, s_2 = \frac{1}{2}$

Then the possible values of J from J-J coupling are

- (A) 0, 1, 2, 3, 4 (B) 0, 2, 3, 4, 5
- (C) 1, 2, 3, 4, 5 (D) 0, 1, 2, 5, 6
- **68.** For d⁸ configuration, the total number of optical electrons is

(A) 1	(B) 2
(C) 3	(D) 4

69. The degeneracy of spectral term 3F is

(B) 9

- (C) 15 (D) 21
- **70.** The doublets observed in alkali spectra are due to
 - (A) Screening of the K-electrons
 - (B) Spin-orbit interaction of electrons
 - (C) Pressure of isotopes
 - (D) Spin of electrons only
- **71.** The hyperfine splitting of spectral lines of an atom is due to
 - (A) The coupling between the spins of two or more electrons
 - (B) The coupling between the spins and orbital angular momentum of electrons
 - (C) The coupling between electron spins and nuclear spin
 - (D) The effect of external electro-magnetic fields
- **72.** The number of strong-magnetic field levels of ²D term is
 - (A) 8 (B) 10
 - (C) 12 (D) 5

73. The precessional frequency ω_L of an electron with an angular momentum vector \vec{L} in a magnetic field \vec{B} and orbital magnetic moment $\frac{\vec{\mu}}{L}$ is

74. The Lande g factor for the term ${}^{2}D_{3/2}$ is

(A)
$$\frac{2}{3}$$
 (B) $\frac{4}{7}$
(C) $\frac{4}{5}$ (D) $\frac{2}{5}$

- **75.** To observe the infrared absorption spectrum in a molecular medium
 - (A) The molecule should possess a permanent dipolemoment
 - (B) The electric dipolemoment of the molecule is zero
 - (C) The molecule should have a very strong absorption band in the visible region
 - (D) The molecule should have a very strong absorption band in the ultraviolet region
- 76. Raman effect is due to collision of
 - (A) Photon with electron
 - (B) Photon with molecule
 - (C) Electron with atom
 - (D) Electron with electron

- **77.** Match the typical spectra of stable molecules with the corresponding wave number range.
 - 1. Electronic i. 10⁶ cm⁻¹ and above spectra
 - 2. Rotational ii. $10^5 10^6 \text{ cm}^{-1}$ spectra
 - 3. Molecule iii. $10^8 10^2 \text{ cm}^{-1}$ dissociation
 - (A) 1 ii, 2 i; 3 iii
 - (B) 1-ii, 2-iii; 3-i
 - (C) 1 iii, 2 ii; 3 i
 - (D) 1-i, 2-ii; 3-iii
- **78.** The no. of Bravais lattices in monoclinic crystal structure
 - (A) 1 (B) 2
 - (C) 3 (D) 4
- 79. In a cubic crystal, the Bragg's angle for first order reflection from (1, 1, 0) plane is 30°. If the wavelength of X-rays is 1.54 A°, the lattice parameter is
 - (A) 2.37 A°
 (B) 2.27 A°
 (C) 2.17 A°
 (D) 2.07 A°
- **80.** Which of the following parameters are related to Grevneisen relation ?
 - (A) Thermal conductivity, thermal expansion coefficient, heat capacity
 - (B) Thermal expansion coefficient, specific heat and compressibility
 - (C) Thermal expansion coefficient, specific heat and electrical conductivity
 - (D) Thermal conductivity, heat capacity and compressibility

- **81.** Which of the following statement is incorrect?
 - (A) Hall effect explains the type of charge carriers
 - (B) Hall effect measures the mobility of charge carriers
 - (C) Hall effect measures the resistance of charge carriers
 - (D) Hall effect provides the density of charge carriers
- 82. The temperature (T) dependence of ferromagnetic susceptibility (χ) with curie temperature (T₂) is

(A)
$$\frac{C}{T + T_c}$$
 for $T < T_c$

(B)
$$\frac{C}{T+T_c}$$
 for T > T_c

(C)
$$\frac{C}{T-T_c}$$
 for $T > T_c$

(D)
$$\frac{C}{T - T_c}$$
 for T < T_c

83. The second Brillouin zone range of K-values

(A) From
$$-\frac{\pi}{a}$$
 to $+\frac{\pi}{a}$
(B) From 0 to $\frac{\pi}{a}$
(C) From $-\frac{\pi}{a}$ to $-\frac{2\pi}{a}$ and $+\frac{\pi}{a}$ to $\frac{2\pi}{a}$
(D) From 0 to $\frac{-\pi}{a}$

- **84.** Which of the following is the plane defect ?
 - (A) Vacancy
 - (B) Dislocations
 - (C) Grain boundaries
 - (D) Frenkel defects
- **85.** Which of the following property does not change when a material changes from normal state to superconducting state ?
 - (A) Entropy
 - (B) Specific heat
 - (C) Magnetic properties
 - (D) Crystal structure
- **86.** Which of the following liquid crystal has the helical structure ?
 - (A) Nematic
 - (B) Smectic
 - (C) Cholesteric
 - (D) None of the above
- **87.** Which of the following equation represents the critical magnetic field ?

(A)
$$H_c = H_o \left[1 - \left(\frac{T}{T_c} \right) \right]^2$$

(B) $H_c = H_o \left[1 + \left(\frac{T}{T_c} \right) \right]^2$
(C) $H_c = H_o \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$
(D) $H_c = H_o \left[1 + \left(\frac{T}{T_c} \right)^2 \right]$

|| 🛋

88. Which of the following graphs shows the dependence of free energy F on the order parameter of a superconductor at a fixed temperature $T < T_c$ (where T_c is the superconducting transition temperature) ?

- **89.** Lattice part of the specific heat in metals at low temperatures
 - (A) Proportional to temperature and larger than the classical value
 - (B) Proportional to temperature and smaller than the classical value
 - (C) Proportional to cube of temperature and smaller than the classical value
 - (D) Proportional to cube of temperature and larger than the classical value

90. The range (R) and energy (E) relationship for alpha particles can be represented as

(A) $E = CR^{3/2}$	(B) $E = CR^{2/3}$
(C) $R = CE^{2/3}$	(D) $E = CR^{1/3}$

- **91.** Which of the following is not a lepton ?
 - (A) electron (B) proton
 - (C) muon (D) neutrino
- **92.** The baryon quantum numbers for protons, neutrons, electrons and pions are _____,

,, and _	respectively.
(A) 1, 1, 0, 0	(B) 0, 0, 1, 1
(C) 1, 1, 1, 0	(D) 1, 1, 0, 1

- **93.** The energy of the fission fragments is _____ to their masses.
 - (A) proportional
 - (B) inversely proportional
 - (C) exponential
 - (D) none of the above
- 94. Isomeric states of nuclei are related to
 - (A) Higher order electric multipole transitions
 - (B) Higher order magnetic multipole transitions
 - (C) Admixture of electric and magnetic multipole transitions
 - (D) Internal conversion transitions only
- **95.** The energy required to probe elementary particles is of the order of
 - (A) eV (B) KeV
 - (C) MeV (D) GeV
- **96.** Nuclear size and shape are measurable through
 - (A) High energy electron scattering and nuclear quadrupole measurements
 - (B) Hyperfine splitting of spectral lines in w – meson atoms
 - (C) High energy electron scattering
 - (D) Neutron scattering

- **97.** The rotational motion of the nucleus was observed in
 - (A) liquid drop model
 - (B) shell model
 - (C) collective model
 - (D) optical model

(A) 2	(B) 20
(C) 200	(D) 2000

99. Assertion : The deuteron is a loosely bound structure.

Reason : The two nucleons in deuteron spend a considerable amount of time outside the range of the attractive potential which bounds them together.

- (A) Both assertion and reason are incorrect
- (B) Assertion is correct whereas reason is incorrect
- (C) Assertion is incorrect but reason is correct
- (D) Both assertion and reason are correct
- **100.** Thermal newton scattering in single crystal is employed to
 - (A) investigate electron band structure
 - (B) measure directional dielectric properties of materials
 - (C) determine fission reaction crosssection
 - (D) measure phonon dispersion

Space for Rough Work